Differential expression of genes and proteins between electric organ and skeletal muscle in the mormyrid electric fish Brienomyrus brachyistius.
نویسندگان
چکیده
Electric organs (EOs) have evolved independently in vertebrates six times from skeletal muscle (SM). The transcriptional changes accompanying this developmental transformation are not presently well understood. Mormyrids and gymnotiforms are two highly convergent groups of weakly electric fish that have independently evolved EOs: while much is known about development and gene expression in gymnotiforms, very little is known about development and gene expression in mormyrids. This lack of data limits prospects for comparative work. We report here on the characterization of 28 differentially expressed genes between SM and EO tissues in the mormyrid Brienomyrus brachyistius, which were identified using suppressive subtractive hybridization (SSH). Forward and reverse SSH was performed on tissue samples of EO and SM resulting in one cDNA library enriched with mRNAs expressed in EO, and a second library representing mRNAs unique to SM. Nineteen expressed sequence tags (ESTs) were identified in EO and nine were identified in SM using BLAST searching of Danio rerio sequences available in NCBI databases. We confirmed differential expression of all 28 ESTs using RT-PCR. In EO, these ESTs represent four classes of proteins: (1) ion pumps, including the α- and β-subunits of Na(+)/K(+)-ATPase, and a plasma membrane Ca(2+)-ATPase; (2) Ca(2+)-binding protein S100, several parvalbumin paralogs, calcyclin-binding protein and neurogranin; (3) sarcomeric proteins troponin I, myosin heavy chain and actin-related protein complex subunit 3 (Arcp3); and (4) the transcription factors enhancer of rudimentary homolog (ERH) and myocyte enhancer factor 2A (MEF2A). Immunohistochemistry and western blotting were used to demonstrate the translation of seven proteins (myosin heavy chain, Na(+)/K(+)-ATPase, plasma membrane Ca(2+)-ATPase, MEF2, troponin and parvalbumin) and their cellular localization in EO and SM. Our findings suggest that mormyrids express several paralogs of muscle-specific genes and the proteins they encode in EOs, unlike gymnotiforms, which may post-transcriptionally repress several sarcomeric proteins. In spite of the similarity in the physiology and function of EOs in mormyrids and gymnotiforms, this study indicates that the mechanisms of development in the two groups may be considerably different.
منابع مشابه
Electrical and behavioral courtship displays in the mormyrid fish Brienomyrus brachyistius.
Mormyrid electric fish rely on the waveform of their electric organ discharges (EODs) for communicating species, sex, and social status, while they use the sequences of pulse intervals (SPIs) for communicating rapidly changing behavioral states and motivation. Little is known of electric signaling during courtship behavior because of two major difficulties: (1) the fish are not easily bred in c...
متن کاملStereotyped temporal patterns in electrical communication
Mormyrid electric fish communicate using a fixed electric organ discharge (EOD) produced with a variable sequence of pulse intervals (SPI). Through a combination of spike train analysis techniques and multivariate statistics, we develop quantitative methods for analysing temporal patterns in the SPI in Brienomyrus brachyistius. Previous research has indicated the existence of distinct temporal ...
متن کاملCentral control of electric signaling behavior in the mormyrid Brienomyrus brachyistius: segregation of behavior-specific inputs and the role of modifiable recurrent inhibition.
Like all mormyrid fish, Brienomyrus brachyistius produces an electric organ discharge (EOD) with a constant waveform and variable sequence of pulse intervals (SPI). Periodic bursts fall into two display categories termed 'scallops' and 'accelerations', with a third category termed 'rasps' that appears to combine the two. The medullary EOD command nucleus (CN) receives excitatory input from the ...
متن کاملAndrogen correlates of socially induced changes in the electric organ discharge waveform of a mormyrid fish.
Weakly electric fish from the family Mormyridae produce pulsatile electric organ discharges (EODs) for use in communication. For many species, male EODs are seasonally longer in duration than those of females, and among males, there are also individual differences in EOD duration. While EOD elongation can be induced by the administration of exogenous androgens, androgen levels have never before...
متن کاملMorphological Correlates of Signal Variation in Weakly Electric Mormyrid Fish Sections Were Then Imaged Using a Leica Leitz Dmrb Microscope Equipped with at Spot Flex Populations with Homogenous Eod Type Have Uniform Electric Organ Morphology
Overview Weakly electric fish occupy a special place in the field of neuroethology as a model system for the study of the neurobiological basis of natural behavior. Comprising two orders of freshwater teleosts, the Gymnotiformes and the Mormyriformes, weakly electric fish have evolved diverse electric organ discharges (EODs) that are used for electrolocation of objects and for sex-and species r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 215 Pt 14 شماره
صفحات -
تاریخ انتشار 2012